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This note reviews some of the key results in Bayesian asymptotics. We

consider the following questions: Where do posteriors concentrate mass

as the sample size gets large? Are posteriors consistent in the

frequentist sense? What shape does the limiting posterior have? We

start with a general result on the consistency of posterior distributions

(Doob’s theorem), and then present results on the asymptotic normality

for parametric models (Bernstein-von Mises theorem).

1 Posterior Consistency

Frequentist consistency provides guarantees about the limiting location of an esti-

mator. Specifically, an estimator is said to be consistent if it converges to the true

parameter as the sample size grows. We start by examining the consistency of pos-

terior distributions – i.e., the concentration of posterior mass in neighborhoods of

the true parameter. The first result is referred to as Doob’s theorem, which shows

that under very mild assumptions, the posterior will concentrate its mass around

the truth.

First, some preliminary notation. Let Pθ denote a distribution indexed by pa-

rameters θ ∈ Θ. The idea of consistency requires being precise about parameters

being “close”, so let d(θ, a) be the metric of Θ which induces ε-neighborhoods of the

form Nε(a) = {θ : d(θ, a) < ε}. We can now state Doob’s theorem.

Theorem 1 (Doob 1949). Assume the sampling model Pθ is identifiable in the sense

that θ 6= θ′ implies Pθ 6= Pθ′. Then there exists Θ? ⊆ Θ with Π(Θ?) = 1 such that

for each θ? ∈ Θ?, if Xn = (X1, . . . , Xn) are iid Pθ?, then for all ε > 0, we have

lim
n→∞

P(θ ∈ Nε(θ?)|Xn) = 1.

Proof. See chapter 7.4.1 of Schervish (1995), chapter 10.4 of van der Vaart (1998),

chapter 1.3 of Ghosh and Ramamoorthi (2003), or Miller (2018).
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In words, Doob’s theorem says that the for any prior distribution, the posterior

is guaranteed to concentrate in a neighborhood of the true parameter θ? ∈ Θ? as long

as Θ? has strictly positive measure under the prior. Or, in other words, the posterior

is consistent everywhere except for a set of values having measure zero under the

prior. Doob’s theorem thus provides a form of “internal consistency”. What is

remarkable is its generality: Bayes estimators are guaranteed to be consistent only

under an assumption of identifiability.

A major criticism of Doob’s theorem is that it allows for consistency to fail

on a null set, and the size of this null set actually depends on the prior. To see

why this is a concern, consider the following example: let X1, . . . , Xn ∼ N(θ, 1)

where θ ∈ Θ = R and define the prior π(θ) = δ0 which is a point mass at 0.

Since the posterior is also a point mass at zero, it is inconsistent on Θ0 = R\{0}
(i.e., everywhere except zero!) but because Θ0 has measure zero under the prior, the

posterior is still consistent by Doob’s theorem. In this sense, Doob’s theorem can be

perceived as an unsatisfactory result because the posterior is technically consistent

but practically useless. What is also concerning is that the size of the null sets can

be quite large in nonparametric settings, even for “reasonably” chosen priors. See

examples provided by Freedman (1963) and Diaconis and Freedman (1986).

General posterior consistency results with stronger prior conditions are given

by Schwartz (1965), Barron et al. (1999), and Ghosal et al. (1999b). Specifically,

Schwartz (1965) replaces the identifiability condition with a testing condition, and

also requires the prior to place enough positive mass on each Kullback-Leibler (KL)

neighborhood of the true density. Barron et al. (1999) and Ghosal et al. (1999b)

build on the KL prior property and provide consistency results in the Hellinger

(i.e., total variation) distance. The KL property of priors is now known to be a

key property in establishing posterior consistency (although on its own, it is still

not a sufficient condition for posterior consistency). For example, Ghosal et al.

(1999a) show that the type of inconsistency outlined in Diaconis and Freedman

(1986) for estimating location parameters can be avoided if the prior satisfies the

KL property. Ghosal and van der Vaart (2017) provide examples of nonparametric

priors satisfying the KL property, including Pólya trees, Dirichlet process mixtures,

Bernstein polynomial priors, and Gaussian process priors.
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2 Asymptotic Normality for Parametric Models

We now turn to the question of the shape of the limiting posterior distribution.

We focus on the simplest case of smooth parametric models with iid data. Note

that regularity conditions ensuring well-behaved likelihood and prior will be much

stronger than the assumptions underling posterior consistency stated above. For

notation, let Xn = (X1, . . . , Xn) denote the data, p(Xn|θ) the likelihood, and

θ̂n = arg max
θ

p(Xn|θ)

the MLE. Also define the Fisher information matrix as

In(s) = E

[(
∂

∂θ
log p(Xn|θ)

)2 ∣∣∣∣
θ=s

]
= −E

[(
∂2

∂θi∂θj
log p(Xn|θ)

) ∣∣∣∣
θ=s

]

where the expectation is taken with respect to the data.

Our benchmark for establishing asymptotic results will be the asymptotic results

for the MLE. Under some regularity conditions, the MLE will have the following

Gaussian limiting distribution:

√
n(θ̂n − θ)|θ = θ?

d→ N(0, In(θ?)
−1). (1)

Note that here we are explicitly including the conditioning argument θ = θ? to

remind ourselves that in classical large-sample theory, the parameter is fixed and

so the randomness of
√
n(θ̂n − θ) is inherited only through the randomness in the

estimator θ̂n, which in turn inherits its randomness through the data Xn.

The objective of this section is to outline the Bayesian analogue of (1). That

is, we would like to show that the posterior distribution of
√
n(θ − θ̂n) is equal to

a Gaussian distribution in the limit. In the Bayesian approach, however, we will be

conditioning on the data Xn so the MLE is fixed. Therefore,
√
n(θ− θ̂n) is random

only because of the random parameter θ. The desired result is that:

√
n(θ − θ̂n)|Xn

d→ N(0, In(θ?)
−1) (2)

which implies an asymptotic equivalence between the limiting posterior and the

limiting distribution of the MLE. This result dates back to Laplace (1809) but is

now known as the Bernstein-von Mises theorem.
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Heuristic Argument We follow Bernardo and Smith (1994) and first outline a

heuristic argument for why the posterior should look like a normal density in the

limit. Take a second-order Taylor series expansion of the log likelihood and the log

prior around their respective maxima, θ̂n (the MLE) and θ̂0 (the prior mode):

log p(Xn|θ) = log p(Xn|θ̂n) +
1

2
(θ − θ̂n)′

( ∂2

∂θi∂θj
log p(Xi|θ)

)∣∣∣
θ=θ̂n

(θ − θ̂n) +Rn

= log p(Xn|θ̂n)− 1

2
(θ − θ̂n)′Λn(θ̂n)(θ − θ̂n) +Rn

log π(θ) = log π(θ̂0) +
1

2
(θ − θ̂0)′

( ∂2

∂θi∂θj
log π(θ)

)∣∣∣
θ=θ̂0

(θ − θ̂0) +R0

= log π(θ̂0)− 1

2
(θ − θ̂0)′Λ0(θ − θ̂0) +R0

where

Λn(θ̂n) =

(
− ∂2

∂θ2
log p(x|θ)

) ∣∣∣∣
θ=θ̂n

Λ0 =

(
− ∂2

∂θ2
log π(θ)

) ∣∣∣∣
θ=θ̂0

are the observed and prior information matrices, respectively. Note that the first-

order terms are absent in the Taylor series expansions above because the gradients

evaluated at the maxima are equal to zero by definition. Under some regularity

conditions that ensure the likelihood and prior are sufficiently smooth, then Rn and

R0 will both be small so we can write the posterior as:

π(θ|Xn) ∝ exp

{
log p(Xn|θ) + log π(θ)

}
≈ exp

{
log p(Xn|θ̂n)− 1

2
(θ − θ̂n)′Λn(θ̂n)(θ − θ̂n) + log π(θ̂0)− 1

2
(θ − θ̂0)Λ0(θ − θ̂0)

}
∝ exp

{
−1

2
(θ − θ̂n)′Λn(θ̂n)(θ − θ̂n)− 1

2
(θ − θ̂0)′Λ0(θ − θ̂0)

}
∝ exp

{
−1

2
(θ − θ̃n)′Λ̃n(θ − θ̃n)

}
where Λ̃n = Λn(θ̂n) + Λ0 is the posterior precision and θ̃n = Λ̃−1

n (Λn(θ̂n)θ̂n + Λ0θ̂0)

is the posterior mean. This shows that the posterior has the kernel of a N(θ̃n, Λ̃
−1
n )

distribution with θ̃n → θ̂n and Λ̃n → Λn(θ̂n) as n gets large.
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Formal Statement We now provide a more formal statement of the Bernstein-

von Mises theorem. The proof is quite involved and so we only outline a sketch.

Details can be found in chapter 7.4.2 of Schervish (1995), chapter 10.2 of van der

Vaart (1998), or chapter 1.4 of Ghosh and Ramamoorthi (2003).

Theorem 2 (Bernstein-von Mises). Let Xn = (X1, . . . , Xn) be iid p(x|θ?) for some

θ? ∈ Θ where Θ ⊂ Rk. Let `n = log p(Xn|θ) and define ψ = Σ
−1/2
n (θ − θ̂n) where

Σn = [−`′′n(θ̂n)]−1 is the inverse of the observed information matrix. Then under

some regularity conditions, the posterior density of ψ converges to the density of a

N(0, Ik) distribution. That is, for each subset B ⊆ Θ and each ε > 0,

lim
n→∞

P

(
sup
ψ∈B

∣∣∣πψ|Xn
(ψ|Xn)− φ(ψ)

∣∣∣ > ε

)
= 0 (3)

where φ(ψ) = (2π)−k/2 exp
(
−1

2‖ψ‖
2
)
.

Proof. A very rough sketch of the proof is as follows. First, define the posterior of

the model parameters θ:

πθ|Xn
(θ|Xn) =

p(Xn|θ)π(θ)∫
Θ p(Xn|θ)π(θ)dθ

=
p(Xn|θ)π(θ)

m(Xn)
.

Then by the change of variables theorem we can then write the posterior of the

transformed variables ψ as:

πψ|Xn
(ψ|Xn) = πθ|Xn

(ψ|Xn)|Σn|1/2.

The proof amounts to showing that this object converges to the standard normal

density function. This is facilitated by multiplying and dividing by the likelihood

evaluated at the MLE and then splitting this posterior into a product of two pieces.

πψ|Xn
(ψ|Xn) =

p(Xn|θ̂n)

p(Xn|θ̂n)
πψ|Xn

(ψ|Xn)

=

(
p(Xn|θ̂n)π(θ̂ + Σ

1/2
n ψ)|Σn|1/2

m(Xn)

)(
p(Xn|θ̂n + Σ

1/2
n ψ)

p(Xn|θ̂n)

)
.

Then some heavy math follows (see details in Schervish, 1995, pg. 437-441) to show

that the first term converges to the appropriate normalizing constant and the second
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term converges to the kernel of a normal density.

p(Xn|θ̂n)π(θ̂n + Σ
1/2
n ψ)|Σn|1/2

m(Xn)
→ (2π)−k/2

p(Xn|θ̂n + Σ
1/2
n ψ)

p(Xn|θ̂n)
→ exp

(
−1

2
‖ψ‖2

)
So together, the product converges to a standard normal density.

The Berstein-von Mises theorem guarantees that inferences based on the pos-

terior distribution are “asymptotically correct” in the frequentist sense. That is,

confidence intervals based on the sampling distribution of an efficient estimator and

credible sets coincide asymptotically. This result also provides formal assurance

that the influence of the prior will vanish in large samples. However, it’s also worth

remembering that the Bernstein-von Mises result above applies to a very simple em-

pirical setting: iid data, correctly specified (finite-dimensional) parametric models,

and likelihoods and priors that are sufficiently well-behaved. Proving similar results

for more complicated models and data settings can be challenging. A few extensions

to other parametric settings exist, including misspecified models (Kleijn and Vaart,

2012), non-iid data, parameters on the boundary of the parameter space (Bochkina

and Green, 2014), and models based on pseudo-likelihoods and generalized posteri-

ors (Miller, 2019).

Proving Bernstein-von Mises theorems for infinite-dimensional models is chal-

lenging (Freedman, 1999). To see why, consider our heuristic argument above based

on a Taylor series expansion of the log-likelihood. In a loose sense, we need the prior

has to be “locally constant” in order for its influence to wash away with large n.

We therefore need to look for regions of the parameter space that are large enough

so that posterior concentrates and also small enough so that prior is approximately

constant. As parameter space gets larger it becomes harder to satisfy both of these

criteria. That said, this continues to be an active area of research with many recent

papers providing Bernstein-von Mises results in semiparametric and nonparametric

settings (Castillo, 2012; Bickel and Kleijn, 2012; Rousseau, 2016; Ročková, 2020;

Ray and Vaart, 2021). A summary of recent developments can also be found in

chapter 12 of Ghosal and van der Vaart (2017).
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