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This note reviews some of the key results in Bayesian decision theory.

The motivation is to understand how and why Bayes estimators are

“good” estimators. We outline conditions of Bayesian optimality and

frequentist optimality, and then present a key result (the complete class

theorem) connecting these two criteria which shows that all “good”

estimators in the frequentist sense must be Bayes with respect to some

prior.

1 Optimality

We first define a few concepts that are at the center of decision theory. Let L(θ, a)

denote the loss function which describes the penalty incurred from taking an action

a ∈ A when the true state of nature is θ ∈ Θ. A decision rule is then a function

δ : X → A which selects an action a ∈ A given data x ∈ X .

Bayesian Optimality The goal is to characterize optimal decision rules. We

first consider the Bayesian version of optimality. Let π(θ|x) denote the posterior

distribution induced by the likelihood function p(x|θ) and prior π(θ). A Bayes

rule δπ with respect to the prior π is defined as the action which, for every x ∈ X ,

minimizes the posterior expected loss:

δπ(x) = arg min
a∈A

∫
Θ
L(θ, a)π(θ|x)dθ = arg min

a∈A

∫
Θ
L(θ, a)p(x|θ)π(θ)dθ. (1)

Frequentist Optimality The posterior expected loss integrates the loss function

over a distribution of model parameters, which is awkward in a frequentist setting.

Therefore, classical decision theory defines optimal rules based on a different type of

expected loss. The (frequentist) risk function R(θ, δ) is defined as the expected

loss, where the expectation is taken with respect to the data x ∈ X :

R(θ, δ) = Ex[L(θ, δ(x))] =

∫
X
L(θ, δ(x))p(x|θ)dx. (2)

1



Note that Bayes rules can also be defined in terms of the frequentist risk. In particu-

lar, minimizing the posterior expected loss at each x ∈ X is equivalent to minimizing

the expected frequentist risk (i.e., Bayes risk), where the expectation is taken with

respect to θ.

In the Bayesian view of optimality, good rules minimize posterior expected loss.

In the frequentist view, good rules minimize risk. This is formalized with the concept

of admissibility. A decision rule δ is inadmissible if there exists another decision

rule δ′ such that R(θ, δ′) ≤ R(θ, δ) for all θ ∈ Θ (with strict inequality holding for

some θ). If there is no such δ′, then δ is admissible.

Admissibility is a useful criterion when searching for decision rules. For example,

knowing that an estimator is inadmissible is clearly bad in that another estimator

with lower risk is guaranteed to exist. One of the most popular and surprising

examples of an inadmissible estimator is given by James and Stein (1961).

Example 1 (James-Stein). Suppose that Yi ∼ N(θi, 1) and define the loss L(θ, a) =∑p
i=1(θi − ai)2. Then if p > 2, δ(y) = y is inadmissible.

What makes this result surprising is that δ(y) = y is both the least squares

estimator and the MLE!1 Even in a familiar setting of estimating normal means

under squared error loss, the workhorse estimators do not meet this frequentist

version of optimality. James and Stein (1961) also propose a new estimator:

δJS(y) = δ(y)

[
1− p− 2∑p

i=1 y
2
i

]
which is shown to dominate δ(y). Notice that [·] will shrink the MLE towards 0

whenever (p − 2) <
∑p

i=1 y
2
i which is why the James-Stein estimator is referred to

as a shrinkage estimator.2 James and Stein (1961) were one of the first to document

and popularize the benefits of shrinkage, which is now an indispensable tool in the

analysis of modern high-dimensional data.

1This estimator is also a Bayes estimator under a uniform (and improper) prior. This example
also highlights one of the nuances that will arise when studying the admissibility of Bayes rules.
Specifically, Bayes rules with proper priors can easily be shown to be admissible, but Bayes rules
with improper priors – referred to as generalized Bayes rules – need not be admissible.

2In an empirical Bayes framework, it can be shown that
∑p

i=1 y
2
i is an unbiased estimator of 1

+ the variance of θi and so shrinkage will be heavier as the variance of θi gets small.
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2 Complete Class Theorem

We now turn to the question of how Bayes rules perform under this frequentist

criterion of optimality. We first define the notion of a “complete class”. A class of

decision rules C ⊂ D is said to be complete if, for all δ ∈ D\C, there exists a rule

δ′ ∈ C such that R(θ, δ′) ≤ R(θ, δ) for all θ ∈ Θ (with strict equality holding for

some θ). In words, if a class C is complete, then for any decision rule outside of C,

there will always be a better decision rule (in terms of having lower frequent risk)

inside of C. In fact, a complete class always contains the set of admissible rules and,

in some scenarios, is the class of admissible decision rules. The main result in this

section is that Bayes rules form a complete class.

Theorem 1 (Complete Class Theorem). If Θ is finite and the risk set is convex,

then the class of all Bayes rules forms a complete class. Thus, a decision rule is

admissible if and only if it is a Bayes rule δπ with respect to some prior π.3

Proof. Need to show that (i) all Bayes rules are admissible and (ii) all admissible

rules are Bayes rules. Assume Θ = {θ1, . . . , θK} is finite and the prior puts positive

mass everywhere π(θ) > 0 for all θ ∈ Θ.

(i) Proof by contradiction. Assume a Bayes rule δπ is inadmissible so that another

decision rule δ has lower risk.

R(θ, δ) ≤ R(θ, δπ) for all θ ∈ Θ

Therefore,

R(π, δ) =

K∑
k=1

π(θk)R(θk, δ) <

K∑
k=1

π(θk)R(θk, δ
π) = R(θ, δπ)

which contradicts the assumption that δπ is a Bayes rule (i.e., minimizes ex-

pected risk).

(ii) This direction is much more technical. Assume the decision rule δ0 is admis-

sible. Then do the following:

3This theorem was first proven by Wald (1947) under the conditions that the parameter space
Θ is finite, the sample space X is finite, and the prior π(θ) is proper and strictly positive. Gener-
alizations to infinite dimensional parameter spaces and unbounded loss functions can be found in
Le Cam (1955) and Brown et al. (1976). Generalizations to improper priors can be found in Sacks
(1963), Stone (1967), and Berger and Srinivasan (1978).

3



– Define the risk set S = {(R(θ1, δ), . . . , R(θK , δ))} which is convex if Θ is

finite

– Define the lower orthant set Q(s) = {s ∈ RK : sk ≤ R(θk, δ) ∀k ≤ K}

– Show s0 = (R(θ1, δ0), . . . , R(θK , δ0)) is a lower boundary point of S

– Invoke the separating hyperplane theorem to prove existence of a vector

v separating the risk set S from the lower orthant set Q(s0):

v · x ≤ v · s for all x ∈ Q̃(s0) and s ∈ S

where Q̃(s0) = Q(s0)\{s0} and vk ≥ 0 for all k = 1, . . . ,K

– Rescale v to be defined on the probability simplex: π = v/(v · 1)

v · x ≤ v · s =⇒ π · x ≤ π · s =⇒ π · s0 ≤ π · s

– Therefore δ0 is a Bayes rule with respect to π

The Complete Class Theorem is profound because it equates admissible rules

with Bayes rules. That is, any admissible frequentist decision rule can be derived

from a Bayesian perspective. At a high level, this suggests that we only need to

consider Bayes rules when searching for good estimators (regardless of the inference

paradigm!).
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