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This note reviews some of the key results underlying MCMC theory,

discusses the theoretical underpinnings of popular MCMC algorithms

(the Metropolis-Hastings algorithm and Gibbs sampler), and presents a

few applications in the context of economic choice models.

1 Preliminaries

Markov chain Monte Carlo (MCMC) methods are an indispensable tool in the

Bayesian paradigm. In some sense, MCMC put Bayesian analysis “on the map”

by making it feasible to generate posterior samples from a much wider class of

Bayesian models. While non-conjugate priors and normalizing constants would pose

challenges to analytical posterior sampling solutions (or preclude them altogether),

they are no longer issues with MCMC. The broad idea of MCMC is to construct a

Markov chain that converges to the required posterior distribution. The goal of this

note is to define canonical MCMC algorithms and briefly explain why they work.

It is first worth mentioning the fascinating history of Bayesian computation and

MCMC methods, which has been discussed at length in Robert and Casella (2011)

and Martin et al. (2020). A short version is as follows. The underlying methods date

back to Los Alamos, New Mexico and statistical physics applications during World

War II. The earliest developments include the Monte Carlo method (Metropolis

and Ulam, 1949) and the Metropolis algorithm (Metropolis et al., 1953), which was

then extended by Hastings (1970). The ideas of Gibbs sampling also have roots

in Hastings (1970), but were rigorously laid out in Geman and Geman (1984). A

seminal paper by Gelfand and Smith (1990) popularized MCMC to the Bayesian

community, which sparked an MCMC revolution in the ’90s. Robert and Casella

(2011) also cites a conference held at Ohio State University in February 1991 as a

seed of this revolution. The conference was organized by Alan Gelfand, Prem Goel,

and Adrian Smith and included talks from nearly everyone who would now make the

“Who’s Who of MCMC” list. The conference program is included in the appendix

of Robert and Casella (2011).
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Definitions A Markov chain is a sequence of random variables θ(0), θ(1), . . .

evolving over time, where this evolution adherers to a specific Markov structure.

That is, the present state θ(r) only depends on the past through the last state

θ(r−1) or, formally, P (θ(r)|θ(0), θ(1), . . . , θ(r−1)) = P (θ(r)|θ(r−1)). A Markov chain is

governed by the transition kernel P (θ,A) which defines the probability of reaching

set A ⊂ Θ from state θ ∈ Θ. Its density p(θ, ·) is defined as P (θ,A) =
∫
A p(θ, ϑ)dϑ

and is a valid pdf conditional on θ.

The broad goal of Markov chain theory is to identify conditions under which a

Markov chain possesses a (unique) stationary distribution and also converges to this

stationary distribution in the limit. Formally, the distribution π is a stationary

distribution of the Markov transition kernel P if∫
Θ
P (θ,A)π(θ)dθ =

∫
A
π(ϑ)dϑ (1)

To understand why MCMC algorithms “work”, we first need to understand some of

the key properties of Markov chain theory which will help us establish the existence

and uniqueness of, and convergence to, this stationary distribution.

1. (Irreducibility) A Markov chain is π-irreducible if for any initial state θ,

P (θ,A) > 0 whenever π(A) > 0. That is, there is always some way to reach

any state (with positive probability under π) from any other state.

2. (Recurrence) A stronger version of irreducibility is Harris recurrence. A Markov

chain is Harris recurrent if, for all A with π(A) > 0 and all θ, the chain will

reach A with probability 1. As Chan and Geyer (1994) put it, “Harris recur-

rence essentially says that there is no measure-theoretic pathology ... the main

point of Harris recurrence is that asymptotics do not depend on the starting

distribution.”

3. (Reversibility) A Markov chain is reversible if the distribution of (θ(r), θ(r+1))

is the same as the distribution of (θ(r+1), θ(r)). This imposes exchangeability

between θ(r) and θ(r+1).

4. (Detailed Balance) A Markov chain with transition kernel P satisfies detailed

balance with respect to the distribution π if

P (θ, ϑ)π(θ) = P (ϑ, θ)π(ϑ) for all θ, ϑ ∈ Θ. (2)
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Importantly, detailed balance is a sufficient (but not necessary) condition for

reversibility.

5. (Periodicity) A Markov chain is periodic if there are portions of the state

space that it can only visit at certain regularly spaced times; otherwise, the

chain is aperiodic. A sufficient (but not necessary) condition for an aperiodic

chain is P (θ(r) = θ(r−1)) > 0.

6. (Ergodicity) A Markov chain is ergodic if its limiting distribution equals its

stationary distribution. That is, if for all sets A,

lim
r→∞

∥∥P (r)(θ,A)− π(A)
∥∥ = 0 (3)

where ‖ · ‖ is the total variation norm.

Key Results We now state a few key results connecting the properties above to

desired properties of Markov chains. A formal presentation of these results and

discussion of their proofs can be found in Robert and Casella (2004).

R1 If the Markov transition kernel P is reversible w.r.t. π, then π is a stationary

distribution of P .

R2 If the Markov transition kernel P is π-irreducible, then π is the unique

stationary distribution of P .

R3 If the Markov transition kernel P is π-irreducible and aperiodic, then

‖P (r)(θ,A) − π(A)‖ → 0 for almost-every θ. If P is also Harris recurrent,

then convergence holds for every θ.

A corollary to R3 is an ergodic theorem (i.e., a law of large numbers) which says

that sample averages converge to the appropriate population integral.

lim
R→∞

1

R

R∑
r=1

g(θ(r)) = Eπ[g(θ)] (4)

This last result constitutes the second “MC” of MCMC. After we construct the

appropriate Markov chain, we can use Monte Carlo integration to compute posterior

moments for any set of parameters (or functions of parameters).
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2 MCMC Algorithms

We now turn to the construction of MCMC algorithms. Specifically, an MCMC

algorithm for simulating a distribution π is any algorithm producing an ergodic

Markov chain {θ(r)} whose stationary distribution is π. In our context, we need π

to be a posterior π(θ|x) so that {θ(r)} can be treated as draws from π(θ|x). Our

“recipe” to check the validity of an MCMC algorithm is to verify that the transition

kernel: (i) satisfies detailed balance with respect to π; (ii) is π-irreducible; and (iii)

is aperiodic. Together, (i) and (ii) show that the Markov chain has the posterior as

its unique stationary distribution, and (ii) and (iii) show that the chain is ergodic

and thus converges to the posterior.

2.1 Metropolis-Hastings Algorithm

One of the most general and widely-used MCMC algorithms is the Metropolis-

Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970). Given a target

posterior π(θ|x) and conditional density q(ϑ|θ), the algorithm generates a chain

{θ(r)} through the following steps.

Algorithm 1: Metropolis-Hastings

Initialize θ(0)

For r = 1, . . . , R

1. Let θ = θ(r−1) and generate a candidate value ϑ ∼ q(·|θ)

2. Compute the MH acceptance probability

α(θ, ϑ) = min

{
1,
π(ϑ|x)

π(θ|x)

q(θ|ϑ)

q(ϑ|θ)

}

3. Set θ(r) = ϑ with probability α(θ, ϑ)

Otherwise set θ(r) = θ

Proof Our first task is to verify that the MH algorithm is valid (formal results

can be found in Tierney, 1994). Let θ and ϑ two states of the chain.
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(i) (Detailed Balance) The MH transition kernel is defined as

P (θ, ϑ) = α(θ, ϑ)q(ϑ|θ)

First step is to show that P (θ, ϑ) satisfies the detailed balance condition.

α(θ, ϑ)q(ϑ|θ)π(θ|x) = α(ϑ, θ)q(θ|ϑ)π(ϑ|x)

First assume π(ϑ|x)q(θ|ϑ) > π(θ|x)q(ϑ|θ) so that α(θ, ϑ) = 1 and, by symme-

try, α(ϑ, θ) = π(θ|x)q(ϑ|θ)/(π(ϑ|x)q(θ|ϑ)). It follows that

(LHS) α(θ, ϑ)q(ϑ|θ)π(θ|x) = q(ϑ|θ)π(θ|x)

(RHS) α(ϑ, θ)q(θ|ϑ)π(ϑ|x) =
π(θ|x)q(ϑ|θ)
π(ϑ|x)q(θ|ϑ)

q(θ|ϑ)π(ϑ|x) = π(θ|x)q(ϑ|θ)

so the LHS and RHS are equal and detailed balance is satisfied. Note that

because of symmetry, the same is true for the case when π(ϑ|x)q(θ|ϑ) ≤
π(θ|x)q(ϑ|θ). Therefore, the MH update is reversible.

(ii) (π-Irreducible) A sufficient condition for irreducibility is that q(ϑ|θ) > 0 for

all (ϑ, θ) in the support of the posterior π(θ|x). Moreover, by Corollary 2 in

Tierney (1994), if a Metropolis-Hastings chain is π-irreducible then it is Harris

recurrent.

(iii) (Aperiodic) Since the MH acceptance probability guarantees that some can-

didate draws will be “rejected” then P (θ(r) = θ(r−1)) > 0 and the chain is

aperiodic.

By (ii) and (iii) above, the MH chain is ergodic as desired!

Virtues A few comments are also in order about the virtues of the MH algorithm.

First, the algorithm is both simple and remarkably general in the sense that it

“works” under very mild assumptions on proposal densities and with no assumptions

of likelihood structure or prior conjugacy. Moreover, the ratio of posteriors in the

MH acceptance ratio implies that the normalizing constants cancel, and so the

algorithm only requires evaluations of the likelihood and prior. This is one of the

main reasons why the MH algorithm was a breakthrough for Bayesian computation.
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Proposal Densities There are two main classes of proposal densities, each leading

to a different “type” of MH algorithm. The first specifies proposals of the form:

q(ϑ|θ) = q(ϑ) (5)

and so the proposed value is independent of the current state. MH algorithms with

such proposals are referred to as independence MH algorithms. The second specifies

proposals of the form:

q(ϑ|θ) = q(‖ϑ− θ‖) (6)

and are thus symmetric. In this case, we can we can write ϑ = θ + ε where ε

has a symmetric distribution. MH algorithms with this type of symmetric proposal

density are referred to as random-walk MH algorithms. One feature of symmetric

proposals is that the ratio of proposals will cancel in the MH acceptance ratio, and

so the only objects that must be evaluated are the likelihood and prior. In fact, the

original Metropolis algorithm (Metropolis et al., 1953) assumed symmetric proposals

and so one innovation of Hastings (1970) was to provide an extension to asymmetric

proposals.

2.2 Gibbs Sampler

The MH is very general in the sense that the only requirements are evaluations

of the likelihood, prior, and proposal densities. The Gibbs sampler requires a

stronger set of conditions to be met – namely, given a p-dimensional parameter

vector θ = (θ1, . . . , θp) and target posterior π(θ|x), we must be able to sample from

each parameter’s full conditional distribution π(θj |θ−j , x). Consequently, Gibbs

samplers are most commonly used when some form of conditional conjugacy exists

so that the full conditionals can be expressed analytically.

The idea of Gibbs sampling is in some ways both rooted in and justified by

the Hammersley-Clifford Theorem, which proves that we can write out a joint

distribution p(θ1, ..., θp) in terms of only the full conditional distributions p(θj |θ−j).
For example, consider the bivariate distribution p(θ1, θ2). It follows that
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p(θ1, θ2) = p(θ2|θ1)× p(θ1)

= p(θ2|θ1)× 1
1

p(θ1)

= p(θ2|θ1)× 1∫ p(θ2)
p(θ1)dθ2

= p(θ2|θ1)× 1∫ p(θ1,θ2)/p(θ1)
p(θ1,θ2)/p(θ2)dθ2

= p(θ2|θ1)× 1∫ p(θ2|θ1)
p(θ1|θ2)dθ2

(7)

and so the set of full conditional distributions, p(θ1|θ2) and p(θ2|θ1), summarize all

information in the joint distribution.

Formally, given a target posterior π(θ|x), the Gibbs sampler generates a chain

{θ(r)} by iteratively sampling from each parameter’s full conditional distribution.

Algorithm 2: Gibbs Sampler

Initialize θ(0) = (θ
(0)
1 , . . . , θ

(0)
p )

For r = 1, . . . , R

1. Sample θ
(r)
1 ∼ π(θ1|θ(r−1)

1 , ..., θ
(r−1)
p , x)

2. Sample θ
(r)
2 ∼ π(θ2|θ(r)

1 , θ
(r−1)
3 , ..., θ

(r−1)
p , x)

...

p. Sample θ
(r)
p ∼ π(θp|θ(r)

1 , θ
(r)
2 , ..., θ

(r)
p−1, x)

Proof To demonstrate validity, we will show that the Gibbs sampler is a special

case of the MH algorithm with acceptance probability equal to 1. Consider a move

from θ = (θ1, . . . , θj , . . . , θp)→ ϑ = (θ1, . . . , ϑj , . . . , θp). That is, we will modify the

jth component of the θ vector. The proposals under a Gibbs sampler take the form:

q(ϑ|θ) = π(ϑj |θ−j , x)

q(θ|ϑ) = π(θj |θ−j , x)

7



and so the MH acceptance ratio is equal to:

π(ϑ|x)

π(θ|x)

q(θ|ϑ)

q(ϑ|θ)
=
π(ϑ|x)

π(θ|x)

π(θj |θ−j , x)

π(ϑj |θ−j , x)
=
π(ϑj |θ−j , x)π(θ−j |x)

π(θj |θ−j , x)π(θ−j |x)

π(θj |θ−j , x)

π(ϑj |θ−j , x)
= 1.

Thus, a Gibbs update for θj is equivalent to an MH update where the acceptance

probability is equal to 1.

3 Examples

In this section, we show how the MCMC algorithms discussed above can be applied

to Bayesian choice models. We specifically consider a binary probit model (Gibbs

sampler), a multinomial logit model (MH algorithm), and a hierarchical multinomial

logit model (hybrid Gibbs or Metropolis-within-Gibbs sampler). These examples can

also be found in Chapters 3.8, 3.11, and 5.4 of Rossi et al. (2005).

3.1 Binary probit model (Gibbs sampler)

The binary probit model is a latent variable model with a binary outcome yi ∈ {0, 1}.

zi = x′iβ + εi, εi ∼ N(0, 1) (8)

yi =

1 if zi ≥ 0

0 otherwise
(9)

The first step to a Bayesian analysis is to write down the likelihood, prior, and

posterior.

(i) Likelihood

p(y|X,β) =
n∏
i=1

Φ(x′iβ)yi [1− Φ(x′iβ)]1−yi

(ii) Prior

β ∼ N(β̄, A−1)
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(iii) Posterior

π(β|y, x) ∝ p(y|X,β)p(β)

∝

(
n∏
i=1

p(yi|xi, β)

)
p(β)

∝

(
n∏
i=1

Φ(x′iβ)yi [1− Φ(x′iβ)]1−yi

)
exp

(
−1

2
(β − β̄)′A(β − β̄)

)

The computational challenge with this model is that the posterior does not have an

analytic expression (conjugate priors do not exist). Direct analytic sampling from

the posterior is therefore infeasible.

Let’s see how we can set up a Gibbs sampler to solve this problem. The first

“solution” is to treat the latent zi as a model parameter, thus augmenting the

parameter vector to be (β, z1, . . . , zn). This is referred to as data augmentation

and was a contemporaneous development to the Gibbs sampler (Tanner and Wong,

1987). We now have a set of two full conditional distributions: π(β|z1, . . . , zn, y,X)

and π(z1, . . . , zn|β, y,X).

Note that conditional on the z vector, the full conditional for β becomes the

posterior of a Bayesian linear regression model with normal conjugate priors (or

more specifically, conditionally conjugate priors). Therefore, we have

β|z, y,X ∼ N(β̃, (X ′X +A)−1) (10)

where β̃ = (X ′X +A)−1(X ′z+Aβ̄). So conditional on knowing the latent outcome

variables, we have an analytic expression for the posterior from which we can easily

generate samples. Turning to the second full conditional, zi is a truncated normal

random variable with truncation points governed by the choice outcome yi. That

is,

zi|β, yi = 1, xi ∼ N(x′iβ, 1) · I[0,∞)(zi)

zi|β, yi = 0, xi ∼ N(x′iβ, 1) · I(−∞,0)(zi)

(11)

and so zi is truncated below at 0 if yi = 1 and truncated above at 0 if yi = 0.

Sampling from this full conditional can be made using a function like rtnorm() in

R, for example.

Together, (10) and (11) give us analytic expressions for the necessary full condi-
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tional distributions. We can then use a Gibbs sampler to sample from the posterior.1

Specifically, initialize β(0), z
(0)
1 , . . . , z

(0)
n and then for r = 1, . . . , R, do the following.

• Sample β(r)|z(r−1)
1 , . . . , z

(r−1)
n , y,X from (10)

• Sample z
(r)
1 |β(r), y,X from (11)

...

• Sample z
(r)
n |β(r), y,X from (11)

Note that the terms z
(r−1)
−i are absent from the right-hand-size of the zi full condi-

tional since the zi’s are assumed to be iid.

3.2 Multinomial logit model (Metropolis-Hastings algorithm)

The multinomial logit model is another latent variable model, but now with a multi-

nomial outcome yi ∈ {1, . . . , J} where

uij = x′ijβ + εij , εij ∼ TIEV

and

yi = j if uij ≥ uik for all k 6= j.

We again start by writing down the likelihood, prior, and posterior.

(i) Likelihood

p(y|β,X) =

n∏
i=1

J∏
j=1

p
1(yi=j)
ij

pij =
exp(x′ijβ)∑J
k=1 exp(x′ikβ)

(ii) Prior

β ∼ N(β̄, A−1)

1The function rbprobitGibbs() in the bayesm R package (Rossi, 2019) implements this Gibbs
sampling algorithm for the binary probit model.
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(iii) Posterior

π(β|y,X) ∝ p(y|X,β)p(β)

∝

(
n∏
i=1

p(yi|xi, β)

)
p(β)

∝

 n∏
i=1

J∏
j=1

[
exp(x′ijβ)∑J
k=1 exp(x′ikβ)

]1(yi=j)
 exp

(
−1

2
(β − β̄)′A(β − β̄)

)

Just like the case of the binary probit model, the computational challenge with the

multinomial logit model is that the posterior does not have an analytic expression

and so direct analytic sampling from the posterior above is infeasible. Moreover,

we cannot find conjugate or even conditionally conjugate priors for β, so a Gibbs

sampler is also infeasible.

We therefore turn to a random-walk MH algorithm.2 Initialize β(0) and then for

r = 1, . . . , R, do the following.

• Generate a candidate value β∗ ∼ N(β(r−1), s2)

• Compute the MH acceptance probability

α(β(r−1), β∗) = min

{
1,

p(y|X,β∗)p(β∗)
p(y|X,β(r−1))p(β(r−1))

}

• Set β(r) = β∗ with probability α(β(r−1), β∗) and set β(r) = β(r−1) otherwise

Note that the proposal density is parameterized by a variance term s2 which acts

as a “step size” of the MH proposal. For guidance on choosing s2 in the context of

logit models, see Section 3.11 of Rossi et al. (2005). Also note that the random-walk

proposal is symmetric and so the MH acceptance ratio only involves evaluations of

the likelihood and prior (and not the proposal).

2The function rmnlIndepMetrop() in the bayesm R package (Rossi, 2019) implements an inde-
pendence MH algorithm for the multinomial logit model.
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3.3 Hierarchical multinomial logit model (Metropolis-within-Gibbs)

A hierarchical multinomial logit model extends the logit model above to a panel

data setting with customers i = 1, . . . , n and purchase occasions t = 1, . . . , Ti:

uijt = x′ijtβi + εijt, εijt ∼ TIEV

and

yit = j if uijt ≥ uikt for all k 6= j.

We again start by writing down the likelihood, prior, and posterior.

(i) Likelihood

p(y|X,β) =

n∏
i=1

Ti∏
t=1

J∏
j=1

p
1(yit=j)
ijt

pijt =
exp(x′ijtβi)∑J
k=1 exp(x′iktβi)

(ii) Prior

βi|∆, Vβ ∼ N(∆′zi, Vβ)

Here zi is a d-vector of observed customer characteristics variables (like demo-

graphics) and ∆ is a d× p matrix describing how average preferences change

with observed characteristics. While the mean function captures “observed

heterogeneity”, the covariance matrix Vβ captures “unobserved heterogene-

ity.” That is, two customers are allowed to have different βi vectors even if

their zi vectors are identical. Since we want to make inferences about (∆, Vβ),

we need to specify a second-stage prior:

vec(∆)|Vβ ∼ N(vec(∆̄), Vβ ⊗A−1)

Vβ ∼ IW (ν, V )

which is the conjugate prior for a multivariate regression model (Rossi et al.,

2005).
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(iii) Posterior

π(β,∆, Vβ|y,X, z)

∝ p(y|X,β)p(β|∆, Vβ)p(∆, Vβ)

∝

(
n∏
i=1

[
Ti∏
t=1

p(yit|xi, βi)

]
p(βi|∆, Vβ)

)
p(∆|Vβ)p(Vβ)

∝

 n∏
i=1

 Ti∏
t=1

J∏
j=1

[
exp(x′ijβ)∑J
k=1 exp(x′ikβ)

]1(yit=j)
 exp

(
−1

2
(βi −∆′zi)

′V −1
β (βi −∆′zi)

)
× |Vβ|−d/2 exp

(
−1

2
tr
(

(∆− ∆̄)′A(∆− ∆̄)V −1
β

))
× |Vβ|−(ν+p+1)/2 exp

(
−1

2
tr
(
V V −1

β

))

Just like both models described above, the computational challenge with this model

is that the posterior does not have an analytic expression and so direct analytic

sampling from the posterior is infeasible. But the hierarchical nature of the model

allows us to sample “blocks” of parameters at a time. In particular, we can design

a Gibbs sampler that will iteratively sample from the following full conditionals:

β|∆, Vβ, y,X

∆, Vβ|β, y,X

where the first block is the set of customer-level parameters β1, . . . , βn and the

second is the set of population-level parameters (∆, Vβ). Note that the sampling

problem associated with the β vector is the same problem that appeared above

for the multinomial logit model. The only difference is that here we have panel

data, and so we must loop over customers and do a total of n MH updates. Then

conditional on the β’s, there is an analytic expression for the full conditional for

(∆, Vβ) and so sampling is exact.

We will use a Metropolis-within-Gibbs algorithm to sample from the posterior

above.3 This hybrid algorithm gets its name from the fact we are iteratively sam-

pling between full conditionals (i.e., Gibbs sampling), but we are swapping in an

3The function rhierMnlRwMixture() in the bayesm R package (Rossi, 2019) implements this
Metropolis-within-Gibbs algorithm for the hierarchical multinomial logit model. The only difference
is that the function is more general and allows for mixtures of normals heterogeneity.
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MH update for parameters with non-conjugate priors and complicated full con-

ditionals (i.e., the βi’s). Specifically, initialize the vector of model parameters

β
(0)
1 , . . . , β

(0)
1 ,∆(0), V

(0)
β and then for r = 1, . . . , R, do the following.

• (MH update) For i = 1, . . . , n

– Generate a candidate value β∗i ∼ N(β
(r−1)
i , s2Vβ)

– Compute the MH acceptance probability

α(β
(r−1)
i , β∗i ) = min

1,
p(yi|xi, β∗i )p(β∗i |∆(r−1), V

(r−1)
β )

p(yi|xi, β(r−1)
i )p(β(r−1)|∆(r−1), V

(r−1)
β )


– Set β

(r)
i = β∗ with probability α(β

(r−1)
i , β∗) and set β

(r)
i = β

(r−1)
i other-

wise

• (Gibbs update) Sample (∆(r), V
(r)
β ) from the posterior of a Bayesian multivari-

ate regression model. Although the structure of this posterior closely matches

that of a Bayesian multiple regression model, there is more matrix algebra

given the multivariate nature of the response. See Section 2.12 of Rossi et al.

(2005) for details.

References

Chan, K. S. and Geyer, C. J. (1994). Discussion: Markov chains for exploring

posterior distributions. The Annals of Statistics, 22(4):1747–1758.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to cal-

culating marginal densities. Journal of the American Statistical Association,

85(410):398–409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, PAMI-6(6):721–741.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1):97–109.

Martin, G. M., Frazier, D. T., and Robert, C. P. (2020). Computing Bayes: Bayesian

computation from 1763 to the 21st century. Working Paper.

14



Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.

(1953). Equation of state calculations by fast computing machines. The Journal

of Chemical Physics, 21(6):1087–1092.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. Journal of the

American Statistical Association, 44(247):335—341.

Robert, C. and Casella, G. (2011). A short history of Markov chain Monte Carlo:

Subjective recollections from incomplete data. Statistical Science, 26(1):102–115.

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer.

Rossi, P. E. (2019). bayesm: Bayesian Inference for Marketing/Micro-Econometrics,

R package version 3.1-4 edition.

Rossi, P. E., Allenby, G. M., and McCulloch, R. (2005). Bayesian Statistics and

Marketing. John Wiley & Sons.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by

data augmentation. Journal of the American Statistical Association, 82(398):528–

540.

Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals

of Statistics, 22(4):1701–1728.

15


	Preliminaries
	MCMC Algorithms
	Metropolis-Hastings Algorithm
	Gibbs Sampler

	Examples
	Binary probit model (Gibbs sampler)
	Multinomial logit model (Metropolis-Hastings algorithm)
	Hierarchical multinomial logit model (Metropolis-within-Gibbs)


