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This note derives the posterior distribution of a Bayesian linear

regression model with conjugate priors and may be used as a companion

to chapter 2.8 in Rossi et al. (2005). We first define the model and

derive the posterior. We conclude with a discussion of efficient

posterior sampling based on the Cholesky decomposition.

1 Model

The standard multiple linear regression model relates a response variable yi to a

k-dimensional vector of predictor variables xi = (xi1, . . . , xik) for i = 1, . . . , n.

yi = x′iβ + εi, εi ∼ N(0, σ2) (1)

The parametric assumption on the error terms induces a distribution on y given xi.

Collecting the predictor variables into a matrix X allows us to rewrite the model in

matrix notation:

y = Xβ + ε, ε ∼ N(0, σ2In) (2)

where y is an n-dimensional vector of response variables, X is an n×k design matrix,

β is a k-dimensional vector of regression coefficients, and ε is an n-dimensional vector

of errors assumed to have a N(0, σ2In) distribution.

The two key ingredients for a Bayesian analysis of the regression model above

are the likelihood (i.e., distribution of the data) and prior (i.e., distribution of pa-

rameters).

Likelihood Assuming the error vector is distributed N(0, σ2In) induces a multi-

variate normal likelihood:

p(y|X,β, σ2) = (2πσ2)−n/2 exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)

}
. (3)
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Prior We choose conjugate priors for (β, σ2) to ensure an analytic expression for

the posterior distribution. With both β and σ2 unknown, the conjugate prior is

specified as p(β, σ2) = p(β|σ2)p(σ2) where

β|σ2 ∼ N(β̄, σ2A−1) (4)

σ2 ∼ ν0s
2
0

χ2
ν0

. (5)

Hence, β|σ2 has a normal prior and σ2 has scaled inverse chi-squared prior.1

Posterior The joint posterior then takes the form:

p(β, σ2|y,X) = p(y|X,β, σ2) p(β|σ2) p(σ2)

∝ (σ2)−
n
2 exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)

}
× (σ2)−

k
2 exp

{
− 1

2σ2
(β − β̄)′A(β − β̄)

}
× (σ2)−(

ν0
2
+1) exp

{
−ν0s

2
0

2σ2

}
.

(6)

2 Deriving the Posterior

Now, the goal is to derive expressions for the marginal posterior distributions of

β|σ2 and σ2.

Step 1. Quadratic Forms We can simplify (6) by noticing that p(y|X,β, σ2)
and p(β|σ2) both contain quadratic forms in β. The first step is to then expand out

the sum of the two quadratic forms.

(y−Xβ)′(y −Xβ) + (β − β̄)′A(β − β̄)

= (y′ − β′X ′)(y −Xβ) + (β′ − β̄′)A(β − β̄)

= y′y − y′Xβ − β′X ′y + β′X ′Xβ + β′Aβ − β′Aβ̄ − β̄′Aβ + β̄′Aβ̄

= β′X ′Xβ + β′Aβ − 2β′X ′y − 2β′Aβ̄ + y′y + β̄′Aβ̄

(7)

1Note the equivalence between the scaled inverse chi-squared distribution and the inverse gamma
distribution: if σ2 ∼ (ν0s

2
0)/χ

2
ν0 then σ2 ∼ IG(ν0/2, ν0s

2
0/2).
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The last line uses the fact that y′Xβ and β′Aβ̄ are both scalars, so y′Xβ = (y′Xβ)′

and β′Aβ̄ = (β′Aβ̄)′. Now write (7) as[
β′(X ′X +A)β − β′(2X ′y + 2Aβ̄)

]
+ y′y + β̄′Aβ̄. (8)

We can further simplify the terms in [·] by completing the square in β.

Step 2. Completing the Square The matrix version of completing the square

is given by:

X ′MX +X ′n+ p = (X − h)′M(X − h) + k (9)

where h = −1
2M

−1n and k = p− 1
4n
′M−1n. Next, we plug in the matrices from (8)

into the general form given above.

M = X ′X +A

n = −2(X ′y +Aβ̄)

h = (X ′X +A)−1(X ′y +Aβ̄)

k = −(X ′y +Aβ̄)′(X ′X +A)−1(X ′y +Aβ̄)

p = 0

If we let β̃ = h = (X ′X +A)−1(X ′y+Aβ̄), then the bracketed terms in (8) become

β′(X ′X +A)β − β′(2X ′y + 2Aβ̄)

= (β − β̃)′(X ′X +A)(β − β̃)− (X ′y +Aβ̄)′(X ′X +A)−1(X ′y +Aβ̄)

= (β − β̃)′(X ′X +A)(β − β̃)− (X ′y +Aβ̄)′β̃

(10)

Now since (X ′X + A)−1 is symmetric and I =
[
(X ′X + A)−1(X ′X + A)

]
, we can

write the rightmost term above as

(X ′y +Aβ̄)′β̃ = (X ′y +Aβ̄)′
[
(X ′X +A)−1(X ′X +A)

]
β̃

= (X ′y +Aβ̄)′
(
(X ′X +A)−1

)′
(X ′X +A)β̃

=
[
(X ′X +A)−1(X ′y +Aβ̄)

]′
(X ′X +A)β̃

= β̃′(X ′X +A)β̃.

(11)
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Therefore, using the results of equations (8), (10), and (11), (7) simplifies to

(y−Xβ)′(y −Xβ) + (β − β̄)′A(β − β̄)

= (β − β̃)′(X ′X +A)(β − β̃) + y′y + β̄′Aβ̄ − β̃′(X ′X +A)β̃.

(12)

Step 3. Main Result The joint posterior distribution is then

p(β, σ2|y,X) ∝ (σ2)−
n
2 exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)

}
× (σ2)−

k
2 exp

{
− 1

2σ2
(β − β̄)′A(β − β̄)

}
× (σ2)−(

ν0
2
+1) exp

{
−ν0s

2
0

2σ2

}
= (σ2)−

k
2 exp

{
− 1

2σ2
(β − β̃)′(X ′X +A)(β − β̃)

}
× (σ2)−(

n+ν0
2

+1) exp

{
−(ν0s

2
0 + y′y + β̄′Aβ̄ − β̃′(X ′X +A)β̃)

2σ2

}
.

(13)

But now we see that the joint posterior distribution factors into two parts: the

conditional posterior of β|σ2 and the marginal posterior of σ2. Formally, we have

β|σ2, y,X ∼ N
(
β̃, σ2(X ′X +A)−1

)
(14)

σ2|y,X ∼ νns
2
n

χ2
νn

(15)

where

β̃ = (X ′X +A)−1(X ′y +Aβ̄) (16)

νn = ν0 + n (17)

s2n =
ν0s

2
0 + y′y + β̄′Aβ̄ − β̃′(X ′X +A)β̃

ν0 + n
. (18)

3 Sampling from the Posterior

Sampling from the posterior above is exact by virtue of conjugacy. That is, we

can generate iid draws from the posteriors of β|σ2 and σ2 using standard software.

However, drawing from β|σ2 requires computing (X ′X + A)−1 (i.e., the inverse of
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the posterior precision) which is the inverse of a k × k matrix. This type of matrix

inverse regularly appear in the computation of posterior moments, especially in

Bayesian regression models. When k is large, this matrix inverse becomes more

computationally demanding and can be a bottleneck in a posterior sampling routine.

Rossi et al. (2005) describe the Bayesian regression model with an eye towards ef-

ficient computation. The goal of this section is to provide the necessary background

information to understand their approach. We start by defining the Cholesky de-

composition which is a common method for matrix factorization.

Definition 1. The Cholesky decomposition of a symmetric positive-definite matrix

Σ is defined as Σ = U ′U where U is the upper triangular “Cholesky root” matrix.

Consider the following simple example (based in R).

> Sigma

[,1] [,2]

[1,] 2 1

[2,] 1 3

> U = chol(Sigma)

> U

[,1] [,2]

[1,] 1.414214 0.7071068

[2,] 0.000000 1.5811388

> t(U)%*%U

[,1] [,2]

[1,] 2 1

[2,] 1 3

Now consider the problem of inverting Σ. The most straightforward approach is to

use the solve() function in R.

> solve(Sigma)

[,1] [,2]

[1,] 0.6 -0.2

[2,] -0.2 0.4

However, a more efficient approach is to use the Cholesky decomposition of Σ.

Definition 2. If Σ is a symmetric positive-definite matrix with Cholesky decompo-

sition Σ = U ′U , then Σ−1 = (U−1)(U−1)′.
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This result shows that the inverse of Σ can be computed only using the inverse

of the Cholesky root U . That is, we have replaced the problem of inverting Σ with

the problem of inverting U . The fact that U is upper triangular leads to faster and

more numerically stable inversion methods relative to a dense matrix like Σ. The

following R code uses the previous result to compute Σ−1.

> U = chol(Sigma)

> U

[,1] [,2]

[1,] 1.414214 0.7071068

[2,] 0.000000 1.5811388

> IR = backsolve(U,diag(ncol(U)))

> IR

[,1] [,2]

[1,] 0.7071068 -0.3162278

[2,] 0.0000000 0.6324555

> IR%*%t(IR)

[,1] [,2]

[1,] 0.6 -0.2

[2,] -0.2 0.4

Here IR refers to the “inverse (Cholesky) root” of Σ. Also notice that backsolve()

is used in place of solve() for computing IR. While solve(U) is equivalent to

backsolve(U,diag(nrow(U))), backsolve() is preferred because it recognizes the

special structure of U and solves the triangular systems of equations.

We can now return to the problem of sampling from the posterior defined in

(14). Using the results of the previous section, we first write

Σ = (X ′X +A) = U ′U (19)

where U is the upper triangular Cholesky root of (X ′X +A). It follows that

Σ−1 = (X ′X +A)−1

= (U−1)(U−1)′

= (IR)(IR)′

(20)
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and so

β̃ = (X ′X +A)−1(X ′y +Aβ̄)

= (IR)(IR)′(X ′y +Aβ̄).

(21)

The following R code generates one draw from the posterior of β|σ2.

k = length(betabar)

U = chol(crossprod(X)+A)

IR = backsolve(U,diag(k))

btilde = crossprod(t(IR ))%*%( crossprod(X,y)+A%*% betabar)

beta = btilde + sqrt(sigmasq )*IR%*% rnorm(k)

Rossi et al. (2005) take this a step further. Let A = U ′U and define

z =

(
y

Uβ̄

)
W =

(
X

U

)
(22)

so that W ′W = (X ′X+A) and W ′z = (X ′y+Aβ̄). The breg() function in bayesm

(Rossi, 2019) uses this modified model structure.

k = length(betabar)

RA = chol(A)

W = rbind(X,RA)

z = c(y,RA%*% betabar)

IR = backsolve(chol(crossprod(W)),diag(k))

btilde = crossprod(t(IR ))%*% crossprod(W,z)

beta = btilde + sqrt(sigmasq )*IR%*% rnorm(k)
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