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This note outlines a method for simulating demand from multiple

discrete/continuous demand models. In this class of models, demand

equations are often complicated expressions without a closed form,

which complicates the process of simulating demand. We focus on a

simulation approach based on analytical expressions of the Kuhn-Tucker

conditions.

1 Preliminaries

There are two approaches for deriving models of consumer choice. The first is

the indirect utility or “dual approach” which specifies an indirect utility function

V (p,M) and then employs Roy’s Identity to derive demand functions. The second

is the direct utility or “primal approach” which specifies a direct utility function

U(x) and budget constraint, and then employs the Kuhn-Tucker (KT) conditions

of optimality to derive demand functions. This note will consider the latter direct

utility approach and will specifically focus on multiple discrete/continuous (MDC)

models à la Kim et al. (2002, 2007) and Bhat (2005, 2008).

MDC models get their name from the type of consumption patterns they admit:

(i) consumption of multiple offerings; and (ii) consumption of continuous quantities.

For instance, in a brand choice model based on discrete choice, consumption would

be limited to, say, Lays potato chips. In a discrete/continuous model, consumers

still choose one offering (Lays), but can consume continuous quantities – e.g., two

bags of Lays chips. In an MDC model, consumption is not limited to the choice of a

single offering, but can take the form of multiple offerings with each being consumed

in continuous quantities – e.g., two bags of Lays potato chips and one bag of Ruffles

potato chips.

The foundation of MDC models is the maximization of a direct utility function

subject to a budget constraint:
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max
x,z

U(x, z)

s.t. p′x+ z ≤ E

(1)

where x = (x1, . . . , xJ) is a consumption vector for the inside goods and z is the

consumption of the (essential) outside good. We can solve for optimal quantities

through the KT first-order conditions.

∂U(x, z)

∂xj
− λpj = 0 if x∗j > 0

∂U(x, z)

∂xj
− λpj < 0 if x∗j = 0

∂U(x, z)

∂z
− λ = 0

(2)

When utility is specified as a nonlinear function of quantities x, then the resulting

demand equations x∗(p,E) will admit both corner and interior solutions.

There are many popular choices of utility functions, including translated CES

or “power” utility (Kim et al., 2002) and translated Cobb-Douglas (Pollak and

Wales, 1969). There are also “generalized” versions of each, which allow for more

flexible expressions of marginal utility. In this note, we will focus on the generalized

translated Cobb-Douglas utility (Hanemann, 1978; Bhat, 2008):

U(x, z) =

J∑
j=1

ψj
γj

log(γjxj + 1) + uz(z) (3)

where ψj is a baseline marginal utility parameter, which is the value of marginal

utility with xj = 0, and γj is a satiation parameter, which controls the curvature of

utility.

2 Simulation Algorithm

One challenge with MDC models is that the expressions of demand arising from (1)

can be complicated, and may not have a closed form. For example, in the case of

(1) with an outside good with nonlinear utility, then xj(p,E) will be an implicit

function. This, in turn, makes it challenging to do things like generate data for

a simulation study or forecast demand. While it is always possible to generate
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demand through constrained optimization routines, like constrOptim in R, such

procedures often require imposing ad-hoc decisions about how to treat small, but

positive quantities. In practice, simulations may be sensitive to these choices of

what is a corner solution vs. what is an interior solution.

The goal of this note is to discuss an approach to simulate from MDC models

that makes explicit use of the KT conditions. To my knowledge, this algorithm first

appeared in Pinjari and Bhat (2011).1 The idea is as follows. If we knew which and

how many goods were selected, then deriving quantities would follow immediately

from the KT conditions in (2). Even though we don’t know this a priori, we can use

the KT conditions to figure this out. To start, assume that only the outside good is

chosen and then check whether the KT conditions in (2) hold. If not, then it must

be the case that at least one xk > 0, with k being the good with the highest “bang

for the buck”: ψk/pk ≥ ψj/pj for all j = 1, . . . , J . So we can then rank goods based

on their value of ψj/pj and assume that z and only the first-ranked good is chosen.

We then again check the KT conditions and if they are satisfied, stop; if not, then

assume that z and the top two goods are chosen, etc. Formally, the algorithm can

be written as follows.

1. Arrange J goods in order of ψj/pj and define M = 1

2. Compute λ∗

3. If λ∗ > ψM+1/pM+1 then compute x∗j for j ≤M set x∗j = 0 for j > M .

Otherwise, go to next step.

4. If M < J , set M = M + 1 and return to step 2.

Otherwise, compute x∗j and stop.

3 Solving for λ∗ and x(λ∗)

The algorithm above requires solving for the optimal Lagrange multiplier λ∗ and

demand as a function of this optimal value xj(λ
∗). In this section, we solve for each

of these objects under three scenarios: (1) a model without an outside good; (2) a

model with an outside good with linear outside good utility; and (3) a model with

1A similar version was also proposed by Kevin Van Horn (then at The Modellers) in a 2012
technical report entitled “Algorithm for Volumetric Forecasting”, which accompanies the discussion
of MDC models in chapter 5 of the “Seven Summits of Marketing Research” textbook. This version
has since been published in the appendix of Allenby et al. (2019).
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an outside good with nonlinear outside good utility. For each type of model, we first

write down the Lagrangian. We then write the KT conditions, write demand as a

function of λ, plug x(λ) into the budget constraint to solve for λ∗, and then plug λ∗

back into the demand function to get x(λ∗).

3.1 No Outside Good Model

max
x

J∑
j=1

ψj
γj

log(γjxj + 1)

s.t. p′x ≤ E

(4)

(i) Lagrangian

L =
J∑
j=1

ψj
γj

log(γjxj + 1) + λ(E − p′x) (5)

(ii) Write Kuhn-Tucker conditions

∂L
∂xj

=
ψj

γjxj + 1
− λpj = 0 if x∗j > 0 (6)

∂L
∂xj

=
ψj

γjxj + 1
− λpj < 0 if x∗j = 0 (7)

∂L
∂λ

= E − x′p = 0 (8)

(iii) Write demand as a function of lambda

ψj
γjxj + 1

− λpj = 0 =⇒ xj(λ) =
ψj − λpj
γjλpj

(9)

(iv) Plug into budget constraint and solve for optimal lambda

J∑
j=1

pjxj = E =⇒
J∑
j=1

pj
ψj − λpj
γjλpj

= E

=⇒ 1

λ
=
E +

∑J
j=1

pj
γj∑J

j=1
ψj

γj

=⇒ λ∗ =

E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj

−1

(10)
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(v) Plug optimal lambda back into demand functions

x∗k = xk(λ
∗)

=
ψk − λ∗pk
γkλ∗pk

=
1

γk

[(
1

λ∗

)
ψk
pk
− 1

]

=
1

γk

E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj

 ψk
pk
− 1



(11)

3.2 Linear Outside Good Model

max
x,z

J∑
j=1

ψj
γj

log(γjxj + 1) + ψzz

s.t. p′x+ z ≤ E

(12)

(i) Lagrangian

L =
J∑
j=1

ψj
γj

log(γjxj + 1) + ψzz + λ(E − p′x− z) (13)

(ii) Write Kuhn-Tucker conditions

∂L
∂xj

=
ψj

γjxj + 1
− λpj = 0 if x∗j > 0 (14)

∂L
∂xj

=
ψj

γjxj + 1
− λpj < 0 if x∗j = 0 (15)

∂L
∂z

= ψz − λ = 0 (16)

∂L
∂λ

= E − x′p− z = 0 (17)

(iii) Write demand as a function of lambda

ψj
γjxj + 1

− λpj = 0 =⇒ xj(λ) =
ψj − λpj
γjλpj

(18)
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(iv) Plug into budget constraint and solve for optimal lambda

J∑
j=1

pjxj + z = E =⇒
J∑
j=1

pj
ψj − λpj
γjλpj

+ z = E

=⇒
J∑
j=1

ψj
γjλ
−

J∑
j=1

pj
γj

+ z = E

=⇒ 1

λ

J∑
j=1

ψj
γj

= E +
J∑
j=1

pj
γj
− z

=⇒ 1

λ
=
E +

∑J
j=1

pj
γj
− z∑J

j=1
ψj

γj
+ ψz

=⇒ λ∗ =

E +
∑J

j=1
pj
γj
− z∑J

j=1
ψj

γj
+ ψz

−1

(19)

(v) Plug lambda back into demand functions

z∗ = ψz

 E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj
+ ψz

 (20)

x∗k = xk(λ
∗) (21)

=
ψk − λ∗pk
γkλ∗pk

=
1

γk

[(
1

λ∗

)
ψk
pk
− 1

]

=
1

γk

E +
∑J

j=1
pj
γj
− z∑J

j=1
ψj

γj

 ψk
pk
− 1


3.3 Nonlinear Outside Good Model

max
x,z

J∑
j=1

ψj
γj

log(γjxj + 1) + ψz log(z)

s.t. p′x+ z ≤ E

(22)
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(i) Lagrangian

L =
J∑
j=1

ψj
γj

log(γjxj + 1) + ψz log(z) + λ(E − p′x− z) (23)

(ii) Write Kuhn-Tucker conditions

∂L
∂xj

=
ψj

γjxj + 1
− λpj = 0 if x∗j > 0 (24)

∂L
∂xj

=
ψj

γjxj + 1
− λpj < 0 if x∗j = 0 (25)

∂L
∂z

=
ψz
z
− λ = 0 (26)

∂L
∂λ

= E − x′p− z = 0 (27)

(iii) Write demand as a function of lambda

ψj
γjxj + 1

− λpj = 0 =⇒ xj(λ) =
ψj − λpj
γjλpj

(28)

(iv) Plug into budget constraint and solve for optimal lambda

J∑
j=1

pjxj + z = E =⇒
J∑
j=1

pj
ψj − λpj
γjλpj

+ z = E

=⇒
J∑
j=1

ψj
γjλ
−

J∑
j=1

pj
γj

+
ψz
λ

= E

=⇒ 1

λ

 J∑
j=1

ψj
γj

+ ψz

 = E +
J∑
j=1

pj
γj

=⇒ 1

λ
=

E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj
+ ψz

=⇒ λ∗ =

 E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj
+ ψz

−1

(29)
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(v) Plug optimal lambda back into demand functions

z∗ = ψz

 E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj
+ ψz

 (30)

x∗k = xk(λ
∗) (31)

=
ψk − λ∗pk
γkλ∗pk

=
1

γk

[(
1

λ∗

)
ψk
pk
− 1

]

=
1

γk

 E +
∑J

j=1
pj
γj∑J

j=1
ψj

γj
+ ψz

 ψk
pk
− 1


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