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A LSP vs. DP Distributions

In this section, we compare the LSP distribution to the partition distribution induced by the
Dirichlet process (DP). Since the LSP distribution is parameterized by a location partition
pn and a dispersion parameter 7 > 0, we fix n = 100 and set p, to be a partition of K =5
contiguous groups with 20 elements in each. We then consider a range of values of the scale
parameter: 7 € {0.1,1,10}. For the DP partitioning model, we again consider different
values of the concentration parameter: « € {0.1,1,10}. The choice of Gy is immaterial
for the purposes of studying the induced partition distribution. To show how each model’s
parameters affect the resulting partition distribution, we generate 10,000 draws from each
distribution and plot the associated pairwise similarity matrices in Figure 1.

As suggested by the location-scale property of the LSP distribution, more mass is placed
on the location partition p,, as 7 tends towards zero (top left). However, as 7 gets large, the
probability mass gets spread more evenly across P, (top right). In contrast, the distribution
induced by the DP has no way of being centered around a particular partition. Under this
model, the probability that any two items are grouped together is therefore constant (bottom
panel). The values of o only uniformly shift these probabilities for all items (i, 7).

By changing the location partition to contain only one group, we can also examine how
accurately the LSP model can approximate the DP model. Figure 2 replicates the LSP

pairwise similarity matrices from the top panel of Figure 1, except we now let p, contain



(a) LSP(pn, ™ =0.1) (b) LSP(p,, 7 =1) (c) LSP(pp, T = 10)

(d) DP(a = 0.1, Go) (e) DP(

1, Go) (f) DP(a = 10, Go)

Figure 1: Pairwise similarity matrices from various LSP and DP distributions. The location
partition of the LSP distribution contains five contiguous groups.

one group and divide the previous values of 7 by 20. We find that the resulting pairwise

similarity matrices closely match those of the DP model in the bottom panel of Figure 1.

(a) LSP(pn, ™ =0.005) (b) LSP(p,,7=0.05) (c) LSP(p,, 7 =0.5)

Figure 2: Pairwise similarity matrices from an LSP distribution where p,, contains one
group and 7 € {0.005,0.05,0.5}.



B Simulation Studies

B.1 Prior Sensitivity Analysis

Data are generated from the separable demand model in Section 2. Let n = 20 be the
number of products and 7" = 100 the number of time periods. The matrix of log prices is
generated from a Unif(0,0.5) distribution, the log expenditure variables are generated from
a Unif(0, 1) distribution, and the expenditure shares are generated from a Dirichlet(1,...,1)
distribution. The relatively few time periods and little variation in prices are chosen to show
the impact of the prior on elasticity and partition parameters. For ease of interpretation, we

let 7, be a partition of K = 4 contiguous groups with each group having 5 products.

rie = (1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4, 4, 4, 4)

n

Then conditional on ,, we generate the elements of 8., = (n,6): n; ~ Unif(—3,0), n;;|m, ~
Unif(0, 3), and O|m, ~ Unif(—10,10). We also let 1);; contain an intercept only, fix 7, = 1
for all products, and set % = 0.1 4+ I,,. A heat map of the induced n x n price elasticity

matrix is shown in Figure 3.
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Figure 3: A heat map of the true price elasticity matrix used to generate the data.



As discussed in Section 4.3, the choice of hyperparameters in the joint prior of 3, and 7,
can have significant bearing on the posterior. We highlight these effects by considering three
prior specifications. The first is an informative LSP prior consistent with what is used in
our empirical analysis: n|m, ~ N(0,101), 6|m, ~ N(0,1007), and 7, ~ LSP(p,,1/(nlogn))
where p,, contains only one group. The second is more diffuse: n|m, ~ N(0,10017), 0|m, ~
N(0,1007), and m, ~ LSP(p,,n/(nlogn)) where again p, contains only one group. The
third specifies a DP prior on 7, with the concentration parameter equal to a = n.

The model is estimated using the MCMC routine outlined in Section 4.2. We demonstrate
the flexibility of our approach and treat v as an estimated parameter with a diffuse normal
prior. The Markov chain is run for R = 50, 000 iterations and the step size of the random-
walk proposals for 7, are chosen to be v = 1/(nlogn).

We first consider the output from the model with an informative prior. The trace plot
of the partition parameter is shown in Figure 4. The z-axis indexes the iteration, and the
y-axis labels the unique partitions visited in the Markov chain. We can see that the true
partition (marked by the horizontal dashed line) is reached within the first 10,000 iterations.
Moreover, a small set of partitions continue to be visited throughout the course of the R

iterations, while still placing highest posterior mass on the true partition.
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Figure 4: The trace plot for the partition parameter m,. The dashed horizontal line
represents the true partition used to generate the data.



Figure 5 plots the posterior distributions over the number of groups K corresponding
to both diffuse and informative priors. We find that diffuse priors tend to favor models
with many groups, as the posterior mass is concentrated concentrated to the right of K =4
(shown by the dashed line). While this effect can be countered through the choice of a more
informative prior on m,, the effect would also diminish as the number of observations or
amount of price variation increases. Going forward, we focus our analysis on the model with

the informative LSP prior.
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Figure 5: The posterior distributions of K are plotted for models with diffuse and infor-
mative priors. The dashed vertical line represents the true number of groups (K = 4).

Figure 6 plots the posterior estimates of 8, = (n,0) for a model where 7, is estimated
and the model where 7, is fixed at its true value. This allows us to both assess the ability
of our model to recover parameters, as well as check for any losses in efficiency that arise
when 7, is estimated. We find that the associated 95% credible intervals always cover the
true parameter values, and there is minimal difference in the length of the credible intervals
between the two models. Figure 7 plots the 95% posterior credible intervals for v and v for
the model when 7, is estimated. All credible intervals cover the true values. While ¥ is also

well recovered, we do not report the estimates for the sake of brevity.
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Figure 6: Conditional posterior means and 95% credible intervals are plotted against the
true values of  and #. The top and bottom panels corresponds to models where 7, is
estimated and fixed, respectively. Dots indicate posterior means.
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Figure 7: 95% Posterior credible intervals are plotted for v and . Dots indicate true
parameter values.



B.2 High-Dimensional Example

This section examines the performance of our separable demand model with a fixed parti-
tion in high-dimensional settings. We consider data simulated from either an unrestricted
log-linear model or a separable model. Let n = 100 denote the number of products. We
explore both regular and high-dimensional settings in which T is either 75% greater than
n (i.e., T = 175) or 75% less than n (i.e., T" = 25), respectively. For the separable mod-
els, we let m, be a partition with K = 10 contiguous groups where each group contains 10
products. Prices and expenditure are generated from a Unif(0,1) distribution and the shares
are generated from a Dirichlet(1,..., 1) distribution. Unrestricted price elasticities are gen-
erated as (; ~ Unif(-3,0) and 3;; ~ Unif(0, 3), the separability parameters are generated
as Oy ~ Unif(0, 10), and the error covariance matrix is set to be ¥ = 0.1 + I,,. Proper and
relatively diffuse conjugate priors are used on all model parameters.

The results are summarized as follows: Figure 8 plots the posterior means and credible

2 elasticity parameters in each model; Table 1 reports in-sample and

intervals for the n
predictive fit statistics as well as the computational time associated with each model. We
find that when T is large, the model that matches the data generating process performs the
best. However, when T is small, the unrestricted models exhibit a tremendous amount of
posterior uncertainty which render them practically useless. For example, the unrestricted
model produces extremely wide 95% credible intervals that, on average, range from -35 to
35. This is also true for the unrestricted model’s predictive fit, as the standard deviations of
the predicted RMSE are more than 150 times larger than in the large T' case. The separable
model also exhibits more uncertainty when n > T, but to a much lesser degree. This suggests

that separability can be a useful restriction for high-dimensional regression models, especially

when the partitioning of goods can be reasonably specified a priori.
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Figure 8: Posterior means and credible intervals of price elasticities for the unrestricted and
separable models. The top two panels correspond to data generated from an unrestricted
model, while the bottom two correspond to data generated from a separable model.



Table 1

In-Sample RMSE

Predicted RMSE

Data Model Mean SD Mean SD Time (in sec)*

Unrestricted

T =175 Unrestricted  1.355 0.017 2.400 0.059 0.93
Separable 71.502 1.242 70.000 1.236 30.39

T =25 Unrestricted — 6.123 1.294 49.949 10.76 0.75
Separable 72.027 1.263 71.928 1.254 15.09

Separable

T =175 Unrestricted — 1.358 0.015 2.433 0.053 0.90
Separable 1.061 0.002 1.131 0.007 30.15

T =25 Unrestricted — 6.578 1.740 54.064  15.937 0.75
Separable 1.318 0.032 1.830 0.043 15.15

*Time is measured as average computation time in seconds per 100 MCMC iterations.
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plotted for each data set. Homogeneity holds whenever the boxplot intersects the horizontal
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line. Negativity holds whenever the boxplot intersects or falls below the horizontal line.
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